Building 3D structures of vanadium pentoxide nanosheets and application as electrodes in supercapacitors.

نویسندگان

  • Jixin Zhu
  • Liujun Cao
  • Yingsi Wu
  • Yongji Gong
  • Zheng Liu
  • Harry E Hoster
  • Yunhuai Zhang
  • Shengtao Zhang
  • Shubin Yang
  • Qingyu Yan
  • Pulickel M Ajayan
  • Robert Vajtai
چکیده

Various two-dimensional (2D) materials have recently attracted great attention owing to their unique properties and wide application potential in electronics, catalysis, energy storage, and conversion. However, large-scale production of ultrathin sheets and functional nanosheets remains a scientific and engineering challenge. Here we demonstrate an efficient approach for large-scale production of V2O5 nanosheets having a thickness of 4 nm and utilization as building blocks for constructing 3D architectures via a freeze-drying process. The resulting highly flexible V2O5 structures possess a surface area of 133 m(2) g(-1), ultrathin walls, and multilevel pores. Such unique features are favorable for providing easy access of the electrolyte to the structure when they are used as a supercapacitor electrode, and they also provide a large electroactive surface that advantageous in energy storage applications. As a consequence, a high specific capacitance of 451 F g(-1) is achieved in a neutral aqueous Na2SO4 electrolyte as the 3D architectures are utilized for energy storage. Remarkably, the capacitance retention after 4000 cycles is more than 90%, and the energy density is up to 107 W·h·kg(-1) at a high power density of 9.4 kW kg(-1).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strengthening of Ceramic-based Artificial Nacre via Synergistic Interactions of 1D Vanadium Pentoxide and 2D Graphene Oxide Building Blocks

Nature has evolved hierarchical structures of hybrid materials with excellent mechanical properties. Inspired by nacre's architecture, a ternary nanostructured composite has been developed, wherein stacked lamellas of 1D vanadium pentoxide nanofibres, intercalated with water molecules, are complemented by 2D graphene oxide (GO) nanosheets. The components self-assemble at low temperature into hi...

متن کامل

Metallic few-layered VS2 ultrathin nanosheets: high two-dimensional conductivity for in-plane supercapacitors.

With the rapid development of portable electronics, such as e-paper and other flexible devices, practical power sources with ultrathin geometries become an important prerequisite, in which supercapacitors with in-plane configurations are recently emerging as a favorable and competitive candidate. As is known, electrode materials with two-dimensional (2D) permeable channels, high-conductivity st...

متن کامل

Vanadium Pentoxide Nanobelt-Reduced Graphene Oxide Nanosheet Composites as High-Performance Pseudocapacitive Electrodes: ac Impedance Spectroscopy Data Modeling and Theoretical Calculations

Graphene nanosheets and graphene nanoribbons, G combined with vanadium pentoxide (VO) nanobelts (VNBs) and VNBs forming GVNB composites with varying compositions were synthesized via a one-step low temperature facile hydrothermal decomposition method as high-performance electrochemical pseudocapacitive electrodes. VNBs from vanadium pentoxides (VO) are formed in the presence of graphene oxide (...

متن کامل

Highly porous chemically modified carbon cryogels and their coherent nanocomposites for energy applications

Highly porous carbon cryogels with tunable pore structure and chemical composition were synthesized through controlled hydrolysis and polycondensation reactions using different chemicals as precursors and either NaOH or hexamine (C6N12N4) as catalysts. Gelation was followed with freeze drying to preserve the highly porous structure during solvent removal and controlled pyrolysis of the organic ...

متن کامل

Simple synthesis of new nano-sized pore structure vanadium pantoxide (V2O5)

New forms of vanadium oxide Nanoporous were fabricated using a simple chemical synthesis method. Vanadium pentoxide (V2O5) Nanoporous were synthesized by sodium metavanadate as precursor and ethylene glycol as surfactant. The samples were characterized by high resolution transmission electron microscopy (HRTEM), field effect scanning electron microscopy (FESEM) and X-ray diffraction (XRD), Four...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nano letters

دوره 13 11  شماره 

صفحات  -

تاریخ انتشار 2013